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Abstract 

Orthographic neighborhood (N) size effects have been extensively studied in English 

consistently producing a facilitatory effect in word naming tasks. In contrast, several recent 

studies on Chinese character naming have demonstrated an inhibitory effect of neighborhood 

size. Response latencies tend to be inhibited by inconsistent characters with large 

neighborhoods relative to small neighborhoods. These differences in neighborhood effects 

between languages may depend on the characteristics (depth) of the mapping between 

orthography and phonology. To explore this, we first conducted a behavioral experiment to 

investigate the relationship between neighborhood size, consistency and reading response. 

The results showed an inhibitory effect of neighborhood size for inconsistent characters but a 

faciliatory effect for consistent characters. We then developed two computational models 

based on parallel distributed processing principles to try and capture the nature of the 

processing that leads to these results in Chinese character naming. Simulations using models 

based on the triangle model of reading indicated that consistency and neighborhood size 

interact with the division of labor between semantics and phonology to produce these effects.  
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Exploring orthographic neighborhood size effects 

in a computational model of Chinese character naming 

	  
1. Introduction 

Orthographic neighborhood size is one of the key lexical variables that affect word response 

latencies during visual word recognition. The most widely used measure of neighborhood 

size (denoted by the statistic of N) is defined as the number of words that could be created by 

changing one letter in a target word (Coltheart, Davelaar, Jonasson, & Besner, 1977). For 

example, dog has a number of orthographic neighbors such as jog, dot, dig, log, and doe. 

Many studies have explored the effects of orthographic neighborhood across a range of tasks 

including naming and lexical decision (Andrews, 1989, 1992; Balota, Cortese, Sergent-

Marshall, Spieler, & Yap, 2004; Carreiras, Perea, & Grainger, 1997; Coltheart et al., 1977; 

Forster & Shen, 1996; Grainger, 1990; Sears, Hino, & Lupker, 1995). While the focus of this 

paper is naming, it is useful to consider both lexical decision and naming data together as 

these can constrain the theoretical explanations of the neighborhood effect. In lexical decision, 

the findings concerning the neighborhood size effect appear to be somewhat mixed (Balota et 

al., 2004). Andrews (1989, 1992) reported a facilitatory effect of neighborhood size in the 

lexical decision task, in particular for low frequency words. However, other studies have 

found that response latencies for words having high frequency neighbors tend to be 

prolonged in comparison with words having low frequency neighbors (Carreiras et al., 1997; 

Grainger, 1990; Grainger, Oregan, Jacobs, & Segui, 1989). This has been referred to as the 

neighborhood frequency effect. Despite this, facilitation in lexical decision has been reported 

when both neighborhood size and neighborhood frequency are considered in the same 

experiment (Forster & Shen, 1996; Sears et al., 1995). Balota et al. (2004) examined the 

neighborhood size effect by conducting multiple regression analyses on a group of younger 

readers and another group of older readers in both naming and lexical decision tasks. They 
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showed that younger readers’ lexical decision performance was facilitated by neighborhood 

size particularly for low frequency words, which is consistent with Andrews (1989, 1992). 

However, in older and slower readers the lexical decision performance was inhibited by 

neighborhood size. These results suggest that the neighborhood size effect in lexical decision 

may depend on decision strategies and the processing speed of the subjects. 

The effect of neighborhood size in naming tasks is much more consistent, showing a 

robust facilitatory effect across many studies (Andrews, 1989, 1992; Balota et al., 2004; 

Carreiras et al., 1997; Grainger, 1990; Peereman & Content, 1995, 1997; Sears et al., 1995), 

particularly when words are low in frequency. This has been supported by studies using 

either a factorial design (Andrews 1989, 1992; Sears et al., 1995) or a regression technique 

(Balota et al., 2004); and the effect also has been found in different alphabetic languages such 

as Dutch (Grainger, 1990), French (Peereman & Content, 1995) and Spanish (Carreiras et al., 

1997).  

One interpretation of the neighborhood size effect proposed by Andrews (1989) is 

based on the interactive activation theory of word recognition (McClelland & Rumelhart, 

1981). Since a target word and its neighbors only differ in one letter, when the target word is 

presented, the word nodes for the neighboring words would be activated early in processing 

along with the target word. The activations in turn feedback to facilitate the activations of the 

constituent letter nodes. The feedback activations are particularly helpful for naming low 

frequency words. On this view, the facilitation results from lexical contribution to the 

orthographic activation, although as argued by Peereman and Content (1995), lexical 

activation of neighbors could contribute to phonological computation rather than 

orthographic processing. One problem with this account is that it would predict the same 

facilitation for lexical decision as naming, but as we have indicated the data for lexical 

decision is much more complex. 
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An alternative hypothesis is that the neighborhood size effect is related to 

phonological computation (Peereman & Content, 1995; 1997). According to this view, the 

effect is not limited to orthographic processing; rather it can be attributed to the variability of 

phonological properties among orthographic neighbors. Evidence for this view comes from a 

study by Peereman and Content (1997), in which they examined the influence of different 

types of orthographic and phonological neighbors on naming. The results showed that when 

the orthographic neighbors were also phonological neighbors (i.e., they are phonographic 

neighbors), the facilitation in naming was the strongest compared with other types of 

neighbors. Thus, they argued that the extent to which orthographic neighborhood size could 

accelerate phonological computation is dependent on the similarity between the phonological 

codes of neighboring words and the target word. This finding is corroborated by the results 

reported in a multiple regression study on four large English naming datasets (Adelman & 

Brown, 2007), where the number of phonographic neighbors was a stronger predictor than 

the conventional neighborhood size in accounting for naming data. 

The phonological computation account of the neighborhood size effect is supported 

by most current theories of reading (Adelman & Brown, 2007). According to the dual-route 

cascade (DRC) models (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Perry, Ziegler, & 

Zorzi, 2007), the facilitatory effect in naming is expected because the models allow the 

processing to activate orthographic neighbors of word stimuli in the orthographic lexicon, 

which in turn activates phonological entries and phonemes. Phonetic activation generated 

from the lexical route along with that generated from the non-lexical route would speed the 

naming latencies. Within the parallel distributed processing (PDP) models (Chang, Furber, & 

Welbourne, 2012, Harm & Seidenberg, 2004; Plaut, McClelland, Seidenberg, & Patterson, 

1996; Seidenberg & McClelland, 1989) the effect emerges as the system adjusts its 
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connection weights following exposure to the shared orthographic structure of the 

neighboring words.  

While the facilitatory effect of neighborhood size in naming is robust in alphabetic 

languages, recent studies in Chinese have showed a contradictory pattern of neighborhood 

size effects (Li, Bi, Wei, & Chen, 2011; Zhao, Li, & Bi, 2012), where the orthographic 

neighbors of phonetic radicals tend to increase naming latencies. To our knowledge, there are 

no studies in alphabetic languages reporting an inhibitory effect of neighborhood size in 

naming; this effect seems to	  be	  reported only in studies based on Chinese characters. In 

Chinese, over 80% of characters are phonograms, which consist of a semantic radical 

(usually on the left) and a phonetic radical (usually on the right) (Zhou, 1978). In general the 

semantic radical provides some information relating to meaning, while the phonetic radical 

provides some information about pronunciation. The neighborhood size of phonetic radicals 

is defined as the number of characters that share the same phonetic radical. Two relevant 

measures are the orthography-to-phonology consistency of a character, indicating whether the 

pronunciation of a character agrees with other characters containing the same phonetic 

radical, and regularity, which is defined as whether a character is pronounced the same as its 

phonetic radical under the constraint that the phonetic radical is pronounceable (Fang, Horng, 

& Tzeng, 1986). These definitions are based on similar concepts to those used in English 

(Coltheart, 1978; Glushko, 1979). Despite the fact that Chinese has a very different 

orthographic system from alphabetic languages, most typical reading effects such as 

frequency effects (Balota et al., 2004; Forster & Chambers, 1973; Hue, 1992; Lee, Tsai, Su, 

Tzeng, & Hung, 2005) and regularity or consistency effects (Glushko, 1979; Lee et al., 2005; 

Taraban & McClelland, 1987) tend to have a similar pattern across English and Chinese, and 

those effects also have been simulated by computational models based on the same general 

learning principles in Chinese (Hsiao & Shillcock, 2004; Yang, McCandliss, Shu, & Zevin, 
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2009). It remains unclear how a more language-specific effect (i.e., the inhibitory effect of 

neighborhood size) seen in Chinese emerges in the reading system.  

1.1. The effect of orthographic neighborhood size in Chinese character naming 

On the basis of the orthographic structures of Chinese phonograms, two different 

types of orthographic neighbors can be defined: semantic radical neighbors and phonetic 

radical neighbors (Feldman & Siok, 1999). Of particular interest here is the phonetic radical 

neighborhood size, also known as phonetic combinability, because it is directly linked to 

phonology. Throughout this paper we will use orthographic neighborhood size in Chinese to 

refer to the neighborhood size of phonetic radicals, unless stated otherwise.  

Several studies in Chinese character reading have examined the effects of 

orthographic neighborhood size and consistency simultaneously because they are closely 

related to phonetic radicals (Hsu, Lee, & Tzeng, 2014; Hsu, Tsai, Lee, & Tzeng, 2009; Li et 

al., 2011; Zhao et al., 2012). Li et al. (2011) found an inhibitory effect of neighborhood size 

for inconsistent characters while a null effect was observed for consistent characters. 

However, when the high frequency neighboring characters in the inconsistent condition were 

removed, the effect became facilitatory. They suggested that the neighboring characters of a 

target character might accelerate activation at the orthographic level; however, any high 

frequency neighbors of the target would	  cause interference at the phonological processing 

stage, resulting in an inhibitory effect. This interpretation is partly consistent with the 

phonological computation account (Adelman & Brown, 2007; Peereman & Content, 1997), 

suggesting that the effect of orthographic neighborhood size is not limited to the orthographic 

level but it is also dependent on the stage of phonological processing. Further evidence for 

this comes from a study of event-related potentials (ERPs) conducted by Hsu et al. (2009). 

They examined the effects of orthographic neighborhood size and consistency in Chinese 

character reading. They demonstrated that characters with large neighborhoods facilitated the 
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earlier stages of orthographic (N170) and phonological processing (P200) relative to 

characters with small neighborhoods. They also elicited larger negativity at the later stage of 

semantic processing (N400), suggesting an increase of semantic competition for high 

neighborhood characters. Their results suggest the effect of orthographic neighborhood size 

is widespread throughout the reading system.  

According to the phonological computation account (Peereman & Content, 1997), one 

might expect a similar effect of neighborhood size in both English and Chinese, if 

considering the orthographic activation of phonology alone. However, as agreed by most 

current theories of reading, there are two different pathways active during reading (Coltheart 

et al. 2001; Plaut et al. 1996). Within the PDP models of reading (Harm & Seidenberg, 2004; 

Plaut et al., 1996) there is a phonological pathway from orthography to phonology and a 

semantic pathway from orthography to phonology via semantics. The division of labor 

between pathways is greatly shaped by the nature of the orthographic systems (Yang, Shu, 

McCandliss, & Zevin, 2013). In English, the mappings between orthography and phonology 

are mostly consistent, which contrasts with the arbitrary mappings between orthography and 

semantics. So learning the mappings in the phonological pathway is much faster and the 

connection weights are optimized for the consistent spelling-to-sound mappings. Thus, 

consistent words can utilize the phonological pathway very efficiently for their 

pronunciations. While inconsistent words can utilize the phonological pathway, at the same 

time they may also partly rely on the semantic pathway for their pronunciations (Plaut et al. 

1996).   

Chinese has less transparent mappings between orthography and phonology but more 

regular mappings between orthography and semantics compared with those in English. 

Moreover, in English, inconsistent words still have many subcomponents that are shared 

among words. For instance, the pronunciation of an inconsistent word, pint, can benefit from 
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the pronunciation of pant because they share the same onset and coda and it is only the vowel 

section that is inconsistent. In Chinese most inconsistent characters do not share any phonetic 

components with their phonetic radicals (e.g., 灑 /sa3/ - 麗 /li4/). However, some characters 

may share either onset or rime. For example, the inconsistent character 結 /jie2/  shares the 

same onset (i.e. /j/) with its phonetic radical 吉 /ji2/ while the inconsistent character 妒 /du4/ 

shares the same rime (i.e. /u/) with its phonetic radical 戶 /hu4/. However, in Chinese this 

partial information derived from the phonetic radical is not very helpful in determining the 

pronunciation of inconsistent characters (Chen, Shu, Wu, & Anderson, 2003). Overall, these 

properties might suggest that the semantic pathway would play a more important role in 

Chinese character naming than it does in English. This might explain the inhibitory effect of 

neighborhood size seen in inconsistent Chinese characters (Li et al. 2011). Specifically, a 

performance cost observed for inconsistent words with large neighborhood may be due to the 

conflict between orthographic activation of phonology from the phonological pathway and 

semantic activation of phonology from the semantic pathway.  

1.2. Computational models of Chinese character naming 

Although a number of theoretical models of Chinese reading have been proposed in 

the literature (Perfetti, Liu, & Tan, 2005; Perfetti & Tan, 1999; Taft & Zhu, 1997), only 

recently have large-scale computational models been developed (Hsiao & Shillcock, 2004; 

Yang et al., 2009; Yang et al., 2013). These provide explicit details about the connections 

between the core processing layers within the system and allow for effective evaluation of 

reading effects. In particular, a recent parallel distributed processing model of Chinese 

character naming by Yang et al. (2009) has demonstrated that the same statistical learning 

principles can be applied to both English and Chinese. They developed a computational 

model of Chinese character naming on the basis of the previous models in English (Harm & 
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Seidenberg, 1999), with revised representations to represent Chinese orthography and 

phonology. The model was able to capture the pattern of interaction between frequency and 

consistency seen in skilled Chinese readers (Hue, 1992; Lee et al., 2005). Analyses of 

internal representations revealed that phonetic radicals emerged as critical processing units 

over learning. These findings show that the processing of orthography-to-phonology 

conversion for Chinese has strong similarities to English. However, the relationship between 

neighborhood size of phonetic radicals and consistency has not been investigated in their 

model.  

The aim of the present study was to develop computational models based on the 

parallel distributed processing framework and to test whether the division of labor between 

phonological and semantic pathways is the key to accounting for the inhibitory effect of 

neighborhood size observed in Chinese character naming. We investigated this by conducting 

a behavioral naming task in order to replicate previous results of Li et al. (2011). We then 

developed two computational models of Chinese character naming based on previous models 

(Chang, Furber, & Welbourne, 2012; Plaut et al., 1996; Yang et al., 2013): one contained 

only the phonological pathway from orthography to phonology and the other one contained 

both the phonological and semantic pathways by providing both orthographic and semantic 

inputs to phonology. We also incorporated a visual processing stage into models, which 

allowed orthographic representations to be developed over the course of learning (Chang et 

al., 2012). We expected that both models would account for the typical interaction between 

frequency and consistency shown in the previous Chinese reading models (Hsiao & Shillcock, 

2004; Yang et al., 2009). However, if the semantic pathway contributes to the emergence of 

the inhibitory effect of neighborhood size, we would expect that only the model including a 

semantic pathway would show the inhibitory effect of phonetic neighbors as seen in skilled 

Chinese readers. 
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2. Behavioral Experiment 

The aim of this experiment was to replicate previous findings of neighborhood size 

effects in Chinese character naming (Li et al., 2011) by manipulating character consistency 

and neighborhood size of phonetic radicals. Specifically, we investigated whether there is an 

inhibitory effect for inconsistent characters with many neighbors and how the processing of 

consistent characters is affected by neighborhood size. Although Li et al., (2011) reported a 

null effect of neighborhood size for consistent characters, it might be worthy of note that the 

average consistency score in their high consistent condition was about 0.6, which was closer 

to a medium level of consistency. The present experiment thus attempted to provide a better 

control of the different levels of consistency. 

2.1. Method 

2.1.1. Participants 

Twenty-seven native Chinese speakers from National Chengchi University in Taiwan 

participated in the naming task (male=10; average age=22). The official and most commonly 

used spoken language in Taiwan is Mandarin Chinese, though there is a widespread dialect 

known as Taiwanese. In addition, the writing system used in Taiwan is based on traditional 

characters. All participants had normal or corrected-to-normal vision, and none were reported 

to have any cognitive problems. They were paid for their participation. This study was 

approved by human subjects research ethics, Academia Sinica, Taiwan. 

2.1.2. Stimuli 

Character consistency was quantified in terms of the ratio of the number of characters 

sharing a phonetic radical that have the same pronunciation relative to the total number of 

characters sharing that phonetic radical; tonal differences were ignored in line with prevous 

studies (Fang et al., 1986, Lee et al. 2005; Hsu et al. 2009). For example, the phonetic radical
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少 (/shao3/, “little”) is shared by six characters; three of which (沙, 砂 and 紗) are 

pronounced in the same way (/shao/) so they have a consistency value of 0.5 (i.e., 3/6). 

Orthographic neighborhood size, also known as phonetic combinability (Feldman & Siok, 

1999) or phonetic radical frequency by type, was defined as the number of characters that 

share the same phonetic radical. For example, the character 鯨 (/jing1/, “whale”) has 

neighbors including 涼 (/liang2/), 掠 (/lue4/), 晾 (/liang4/), 諒 (/liang4/), and黥 (/qing2/). 

 Orthographic neighborhood size had two conditions: large and small. Consistency 

also had two conditions: consistent and inconsistent. Each condition comprised 30 items. As 

can be seen in Table 1, all selected stimuli were of low frequency (average 31 per million)1. 

As intended the consistent group had significantly higher consistency scores than the 

inconsistent group, t(118) = 38.28, p < .001, and the large neighborhood size group had 

significantly more neighbors than the small neighborhood size group, t(118) = 17.74, p <. 

001. To control for a potential confounding effect in naming, characters across conditions 

were matched for number of strokes, character frequency, number of semantic radical 

neighbors and number of phonological neighbors. The number of semantic neighbors 

measures the neighborhood size of the semantic radical. In addition, the number of 

phonological neighbors measures the number of characters that can be generated by 

substituting a single phoneme. Note that in Chinese, the syllable structure is relatively simple 

and most Chinese syllables can be mapped onto more than one character so the number of 

phonological neighbors for a given character is generally rather large.	  Between-items one-

way ANOVA analyses confirmed that the condition groups did not differ significantly on any 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  According to the Chinese naming database by Chang et al. (2016), the frequency scores in 
Chinese range from 1 to 60158 per million. To categorize the frequency scores into five 
levels (very low, low, medium, high and very high), we computed the percentiles of the 
frequency distribution in steps of 20. The 20th, 40th, 60th, and 80th percentiles of the frequency 
distribution are 10, 45, 182, 1005.4 per million respectively. So the average frequency score 
31 per million falls between 20th and 40th percentiles of the distribution and thus is considered 
as low frequency. 
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of those measures all ps > .05. The measures of all the lexical factors used in stimulus 

selection were taken from or computed based on an online psycholinguistic naming database 

(Chang, Hsu, Tsai, Chen, & Lee, 2016). Table 1 shows the descriptive statistics along with a 

representative example of characters in each condition.  

Table 1. Descriptive statistics of a range of psycholinguistic variables as a function of 
consistency and neighborhood size 
 Consistent Inconsistent 

 Large 
neighborhood 

Small 
neighborhood 

Large 
neighborhood 

Small 
neighborhood 

     伕 /fu1/      仟 /qian1/     橙 /cheng2/     絨 /rong2/ 
Consistency 0.91 (0.018) 0.91 (0.022) 0.25 (0.014) 0.29 (0.013) 

Neighborhood size 9.83 (0.60) 3.47 (0.13) 11.27 (0.45) 3.6 (0.16) 

Frequency 30 (4.24) 30.83 (3.37) 29.03 (4.33) 34.2 (4.16) 

Stroke 13.53 (0.67) 14.7 (0.83) 13.1 (0.75) 13.73 (0.89) 

Semantic radical 
neighbors 

82.83 (10.51) 79.1 (7.65) 81.13 (9.4) 80.67 (9.9) 

Phonological 
neighbors 

1144.43 
(64.74) 

1046.9 
 (53.49) 

1128.13 
(60.41) 

1023.3 
 (64.41) 

Note: Means and standard errors of variables in brackets 

2.1.3. Procedures 

The experiment was conducted in a small test room. Participants were instructed to 

read aloud all the words as quickly and as accurately as possible. The presentation sequence 

of the stimuli was randomized for each participant. A voice key with headset connected to the 

computer was used to obtain participants’ response latencies. Before the experiment began, 

there were 20 practice trials. This allowed the participants to familiarize themselves with the 

procedure. Participants’ responses to the practice trials were also used to adjust a loudness 

threshold for individual participants where necessary. In the experiment, each trial started 

with presentation of a cross fixation point for 400 ms, followed by a target character, 

accompanied with a beep sound for 200 ms. The target character remained on the screen until 
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response. There were three breaks during each session. The whole experiment was recorded 

by using an audio recorder.   

 All errors resulting from mispronunciations, inaccurate voice key activation or 

measurement errors were recorded at the time by the experimenter.  

2.2. Results 

All incorrect trials including a mispronounced error or a voice key error were 

excluded. In addition two characters were excluded because of error rates of over 60%. The 

average naming accuracy for all the items was 87.5%. To calculate the average naming 

latencies, any response time faster than 300 ms or slower than 2000 ms was removed. 

Naming latencies outside two standard deviations from the mean were also excluded. These 

resulted in a removal of 5.24% of responses in total. The descriptive results are presented in 

Table 2. 

Table 2. Mean naming latencies and accuracy rates as a function of consistency and 
orthographic neighborhood size 
 Consistent Inconsistent Consistency effect 
 RT Accuracy RT Accuracy RT Accuracy 
Large Neighborhood 793 

(11) 
0.90  

(0.01) 
893  
(16) 

0.83 
(0.01) 

100 0.07 

Small Neighborhood 815 
(10) 

0.94  
(0.07) 

866  
(15) 

0.83 
(0.01) 

51 0.11 

Neighborhood effect 22 0.04 33 0   
       
 

Naming latencies were analyzed using a linear mixed effects model (Baayen, 

Davidson, & Bates, 2008) and, as recommended by Jaeger (2008), the accuracy data was 

analyzed using a generalized linear mixed effects model with a binominal distribution. 

Models were fit using the lme4 package in R (version 3.2.0, 2015). For both naming latencies 

and accuracy data, the significance of individual and interaction factors was assessed using a 

likelihood ratio test to determine whether the model fit changed significantly between models 

with and without the factor or interaction of interest. To control for potential onset effects 
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caused by the sensitivity of voice key to different onsets (Balota et al., 2004; Chang et al. 

2016; Liu et al., 2007), the initial phonemes were also included as a fixed effect in the linear 

mixed effects models. Following Balota et al. (2004), the initial phoneme of each character 

was coded dichotomously (1 or 0) for the following 13 features, where 1 denoted the 

presence of the feature and 0 denoted its absence: stop, affricate, fricative, nasal, liquid, 

aspirated, voiced, bilabial, labiodental, alveolar, palato-alveolar, alveolo-palatal, and velar. 

For naming latencies, as a baseline, a model with participant and item as random 

effects was created.	  Adding initial phonemes as a fixed effect did not significantly improve 

model fit relative to the baseline model, χ2(11) = 12.31, p > .05, suggesting that the initial 

phonemes did not significantly affect naming latency. Nevertheless, we still included the 

initial phonemes into subsequent analyses in case they might have differential effects on 

naming across different experimental conditions. The results showed that the main effect of 

consistency was significant: adding consistency as a fixed factor improved model fit 

compared to a model with random effects of participant and item and fixed effects of 

neighborhood size and initial phonemes, χ2(1) = 33.06, p < .001, while the main effect of 

neighborhood size was not: adding neighborhood size as a fixed factor did not result in a 

significant improvement in model fit compared to a model with random effects of participant 

and item and fixed effects of consistency and initial phonemes, χ2(1) = 0.02, p > .05. 

However, adding the interaction between consistency and neighborhood size resulted in a 

significant improvement in fit compared a model containing random effects and main effects, 

χ2(1) = 4.03, p < .05, with a facilitatory effect of neighborhood size in the consistent 

condition, t = -2.57, p < .05, and an inhibitory effect in the inconsistent condition, t = 2.31, p 

< .05.  

For the accuracy rate analysis, a baseline model with participant and item as random 

effects and with accuracy (correct or incorrect) as the dependent variable was created. Again, 
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the inclusion of initial phonemes did not result in a significant change in model fit, χ2(11) = 

14.09, p > .05, compared to the baseline model. The consistency effect was significant: 

adding consistency as a fixed factor improved model fit compared to a model with random 

effects of participant and item and fixed effects of neighborhood size and initial phonemes, 

χ2(1) = 17.16, p < .001, but neither the effect of neighborhood size nor the interaction 

between consistency and neighborhood size reached significance: adding neighborhood size 

as a fixed factor did not result in a significant improvement in model fit compared to a model 

with random effects of participant and item and fixed effects of consistency and initial 

phonemes, χ2(1) = 0.80, p > .05. Similarly, adding the interaction term between consistency 

and neighborhood size did not significantly improve model fit, χ2(1) = 1.26, p > .05, when 

both the random and main effects were included. 

2.3. Discussion 

The results of the preceding experiment demonstrate that inconsistent characters with 

large neighborhood size inhibited naming performance, which is congruent with the data 

reported by Li et al. (2011). However, when the characters were consistent and had many 

neighbors, a facilitatory effect was observed. This is congruent with the findings of previous 

studies in English (Andrews 1989, 1992; Balota et al., 2004; Carreiras et al., 1997; Grainger, 

1990; Peereman & Content, 1995; Sears et al., 1995), suggesting that if characters come from 

a neighborhood with consistent mappings between orthography and phonology then the 

neighbors facilitate processing. Although the faciliatory effect of neighborhood size for 

consistent words appears to contradict the null effect found in the Li et al. (2011) study, it 

might be because the average consistency score in the high consistent condition in the present 

study is considerably higher than that used in their study (0.91 versus 0.6). Collectively, the 

results replicated previous findings of neighborhood size effect in Chinese character naming, 
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and showed the effect was modulated by the consistency of the mappings between phonetic 

radicals and phonemes. 

3. Simulations 

Two computational models based on parallel distributed processing were developed 

to explore whether semantic processing contributes to the inhibitory effect of neighborhood 

size in Chinese character naming, particularly for inconsistent characters. The architecture of 

the models follows that of previous PDP models in English and in Chinese (Chang et al., 

2012; Yang et al., 2013). The first model contained the reading pathway from visual-

orthographic input (V) to phonology (P), termed VP model. In addition to the V->P pathway, 

the second model also contained the pathway from semantics (S) to phonology (P), termed 

VSP model, following Yang et al. (2013, Simulation 1), where the semantic input mainly 

functioned to provide additional semantic information about word identity to generate 

phonological output. As demonstrated by Plaut et al. (1996), the semantic pathway is 

particularly useful for the processing of words with inconsistent spelling-to-sound mappings. 

It should be acknowledged that this implementation of the semantic pathway is subject to 

some degree of simplification because it receives semantic input directly rather than visual-

orthographic input, like the semantic pathway in a fully implemented connectionist model of 

reading developed by Harm and Seidenberg (2004). This characterization of the semantic 

pathway allows us to investigate whether the division of labor between the phonological and 

semantic pathways interacts with neighborhood and consistency in such a way as to account 

for the neighborhood effects in Chinese character naming.  

The representations of orthography in the present models were not pre-specified; 

rather they were allowed to develop during the time course of training. This effectively 

mimics the development of orthography during reading acquisition in children (Chang et al. 

2012). The training corpus included 3,621 characters taken from the Academia Sinica 
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Balanced Corpus (Huang & Chen, 1998). All characters were phonograms, which consisted 

of one semantic radical and one phonetic radical. To evaluate performance, both models were 

tested to see if they could account for the standard frequency and consistent effects (Lee et al., 

2005). However, the key test was the ability of the models to simulate the neighborhood size 

by consistency interaction found in the present behavioral data. 

3.1. Method 

3.1.1. Model architecture 

Both the VP and VSP models were feedforward networks. Figure 1 shows the 

architectures of both models. The VP model (Figure 1, left panel) consisted of five layers of 

units: 800 visual inputs, 60 hidden units, 100 orthographic hidden units, another 200 hidden 

units and 105 phonological units. The VSP model (Figure 1, right panel) had a phonological 

pathway and a semantic pathway. The phonological pathway for the VSP model consisted of 

800 visual inputs, 60 hidden units, 100 orthographic hidden units, another 200 hidden units 

and 105 phonological units. The semantic pathway for the VSP model consisted of 200 

semantic units and 100 hidden units. For each model, every unit in one layer was fully 

connected to the next layer. In this way, the VP model is a subset of the VSP model, which 

allows us to test whether the orthographic neighborhood size effect is dependent on the 

semantic pathway. However, the total number of units in both the VP and VSP models is not 

equal, where the VSP mode may have more capacity than the VP model. To exclude the 

possibility that the differential effects produced by the two models were due to a total 

capacity limitation, we have trained another VP model as a control model that has the same 

total number of units as that of the VSP model. As can be seen in Appendix A, the patterns 

produced by the control model are similar to that of the present VP model. 
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------------------------------------------------------------------------------------------ 
Insert Figure 1 about here 

----------------------------------------------------------------------------------------- 
 

3.1.2. Visual image representations 

The visual image representation scheme was adopted from the methodology used in 

Chang et al. (2012). Each character was represented by a bitmap image. The models were 

directly trained with those bitmap images as input. Two columns were used for the two 

constituent radicals of each character2 and the size of each column was 20 x 20 pixels. Each 

character was positioned with its left radical on the first column and its right radical on the 

second column as that seen in print. An example of character can be seen in Figure 1. 

3.1.3. Phonological representations 

Phonological representations were generated according to Chinese phonetic features 

(Ministry of Education). Five phoneme slots were used to encode an initial consonant (C), a 

vowel (V), a medial (M), an ending consonant (C) along with a tone (T). Each of the first 

four phoneme slots consisted of a set of 25 phonological features and the last phoneme slot 

consisted of a set of 5 tonal features. All phonetic features were encoded as a binary value 

either 1 or 0. There were in total 105 features for each phonological representation. Figure 2 

shows the phonological representation scheme used in the simulations. 

------------------------------------------------------------------------------------------ 

Insert Figure 2 about here 
----------------------------------------------------------------------------------------- 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  Although most characters used here have a semantic-phonetic structure (i.e. semantic      
radicals on the left and phonetic radicals on the right), there are some characters that have a 
phonetic-semantic structure (i.e. phonetic radicals on the left and semantic radicals on the 
right). 	  



MODELING ORTHOGRAPHIC NEIGHBORHOOD SIZE EFFECT 20 

3.1.4. Semantic representations 

According to previous simulation studies (Plaut, 1997; Plaut & Booth, 2000), 

semantic knowledge of words can be effectively represented by a set of systematically 

structured random features. This captures the arbitrary nature of the mappings between 

semantics and orthography, and between semantics and phonology. One would also expect 

that words within the same semantic category should share more features than words 

belonging to different categories. This scheme of constructing random but overlapping 

semantic representations was adopted in the present study. Semantic representations were 

constructed in respect of the knowledge of semantic radicals. It was assumed that characters 

having the same semantic radical would share some semantic features. Thus, a set of unique 

prototype patterns was first created for each semantic radical family. Each prototype 

consisted of 200 semantic features in which each feature had a probability of 0.1 being active: 

it was coded as 1 if a feature was active; otherwise it was coded as 0. Each prototype was 

then used to generate semantic vectors for each character within the same semantic radical 

family by regenerating the values of semantic features of its prototype with a 0.05 probability 

of changing zeros into ones or vice versa. A further constraint that Euclidean distance 

between two representations should be at least three was also applied. The average number of 

semantic features for each vector was 28.28 (SD=3.79). Illustrations of the semantic 

representations used in the VSP model are shown in Figure 3.  

------------------------------------------------------------------------------------------ 
Insert Figure 3 about here 

----------------------------------------------------------------------------------------- 
 

3.1.5. Training procedures 

The training parameters for the VP model and the VSP model were exactly the same. 

Both models were trained using a back-propagation algorithm with a learning rate of 0.1 and 
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a weight decay of 1E-7. Error scores were computed on the basis of the cross entropy 

function (Plaut et al., 1996) and were used to adjust weight changes during training. The 

initial weights were set to random values ranging from -0.1 to 0.1. The frequency of each 

character was taken from psycholinguistic norms (Chang et al., 2016), and the score was 

compressed by using a square-root function with a cutoff frequency of 2000. The frequency 

of character presentation was implemented by scaling the error derivatives during the back-

propagation procedure based on the compressed frequency (Plaut et al., 1996). Both the VP 

and VSP models were trained on the whole set of 3,621 characters. The task for the VP 

model was to learn the mappings from visual inputs to phonological outputs, and the task for 

the VSP model was to learn the mappings from both the visual and semantic inputs to 

phonological outputs. Each model was trained ten times with different random initial weights 

and different presentation order of the characters.  

It might be argued that the VSP model should have been given some pretraining in the 

links between the semantic units and the phonological units to mimic the situation in reading 

development where children learn to speak before they learn to read. However, in children, 

making use of this pretrained pathway requires learning previously untrained mappings 

between orthography and semantics, which do not exist in our model. Thus, if we had taken 

this approach, the model would have been able to read via the semantic pathway before we 

started to train it, which is clearly not realistic. 

3.1.6. Testing procedures 

The testing procedures for both the VP and VSP models were exactly the same. The 

decoding procedure for phonology was based on the activation of the phonological units. 

Error score was measured by the sum of the squared differences between the activation of 

each output unit and its target activation. For accuracy, the activities of phonological units 

were first binarized: if unit activation was greater than .5, the unit was considered active; 
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otherwise it was classified as non-active. Accuracy of the model was then assessed by 

determining whether the phonological output pattern was the same as the target 

representation.  

3.2. Results 

The training procedures were halted after 18 million presentations for the VP model, 

and at this point it could correctly pronounce 99.12% of characters. For the VSP model, the 

training time was 20 million presentations, which was longer than that of the VP model. This 

was probably due to the interference caused by the semantic pathway before it learned to 

contribute coherently. At the end of training, the VSP model achieved an accuracy rate of 

99.94% at the phonological level.  

3.2.1. Frequency and consistency effects 

Previous behavioral and simulation studies of Chinese character naming have shown 

an interaction between frequency and consistency (Lee et al., 2005; Yang et al., 2009), where 

the naming latencies for inconsistent characters are slower than for consistent characters, in 

particular for low frequency characters. It is thus important to verify whether both the VP 

model and VSP model could replicate the typical effect of frequency and consistency in 

Chinese character naming. 

 Both models were tested on six sets of characters, consisting of two levels of 

frequency (High or Low) and three levels of character type (Consistent Regular, Inconsistent 

Regular, or Inconsistent Irregular). Consistency is the ratio of the number of characters 

sharing a phonetic radical that have the same pronunciation, to the total number of characters 

sharing that phonetic radical; regularity is defined as whether a character is pronounced the 

same as its phonetic radical (Fang et al., 1986). Each set of stimuli comprised 20 characters, 

all taken from Lee et al. (2005, experiment 1). Error score was used as an analogy of 

participants’ naming latencies (Seidenberg & McClelland, 1989; Plaut et al. 1996).  
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Linear mixed effects models were applied to analyze model performance with both 

item and simulation number (one to ten) as random factors and error score as a dependent 

variable. Error items and outliers (greater than two and a half standard deviations from the 

mean) were removed prior to analyses. This resulted in a removal of 6.58% of items in total 

for the VP model and a removal of 6.08% of items in total for the VSP model. Figure 4 

displays the mean error score produced by both the VP model and VSP model on characters 

with different types as the function of frequency. The behavioral pattern reported in Lee et al. 

(2005) is also included in Figure 4. For the VP model, the frequency effect was significant: 

adding frequency as a fixed factor improved model fit compared to a model with random 

effects of simulation and item and a fixed effect of character type, χ2(1) = 49.21, p < .001. 

The effect of character type was also significant: adding character type as a fixed factor 

improved model fit compared to a model with random effects of simulation and item and a 

fixed effect of frequency, χ2(2) = 8.12, p < .05. There was also a significant interaction 

between frequency and character type, where the model fit was improved by adding the 

interaction between frequency and character type, χ2(2) = 7.78, p < .05, when both the 

random and main effects were considered. For the VSP model, both the effects of frequency 

and character type were significant: adding frequency as a fixed factor improved model fit 

compared to a model with random effects of simulation and item and a fixed effect of 

character type, χ2(1) = 67.20, p < .001, and adding character type as a fixed factor improved 

model fit compared to a model with random effects of simulation and item and a fixed effect 

of frequency, χ2(2) = 8.87, p < .05. The interaction between frequency and character type was 

also significant: the model fit was significantly improved by adding the interaction between 

frequency and character type, χ2(2) = 7.07, p < .05, when both the random and main effects 

were considered. These results demonstrated that both the VP model and VSP model were 

able to produce a similar pattern of frequency and consistency as seen in Lee et al. (2005). 
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However, as can be seen in Figure 4, in both models the frequency effect appears larger than 

observed in the behavioral data. It is possible that using a logarithmic transformation, or 

extending the training for longer would bring the effect sizes closer together.  

 ------------------------------------------------------------------------------------------ 
Insert Figure 4 about here 

----------------------------------------------------------------------------------------- 
 

3.2.2. Neighborhood size and consistency effects 

The key test for the present study was to see whether the models could capture the 

interaction pattern between neighborhood size and consistency. Both the VP model and VSP 

model were tested on the same stimuli as in the preceding behavioral experiment. Linear 

mixed effects models were applied to analyze model performance with both item and 

simulation number (one to ten) as random factors and error score as the dependent variable. 

Error items and outliers (greater than two and a half standard deviations from the mean) were 

removed prior to analyses. This resulted in a removal of 6.75% of items in total for the VP 

model and a removal of 4.83% of items in total for the VSP model. The interaction patterns 

produced by the VP and VSP models along with the participants’ interaction data are shown 

in Figure 5. 

------------------------------------------------------------------------------------------ 

Insert Figure 5 about here 
----------------------------------------------------------------------------------------- 

  

For the VP model, the consistency effect was significant: adding consistency as a 

fixed factor improved model fit compared to a model with random effects of simulation and 

item and a fixed effect of neighborhood size, χ2(1) = 7.15, p < .01, but the effect of 

neighborhood size was not: adding neighborhood size as a fixed factor did not result in a 

significant improvement in model fit compared to a model with random effects of simulation 
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and item and a fixed effect of consistency, χ2(1) = 0.29, p > .05. The interaction between 

consistency and neighborhood size was also not significant: the model fit was not 

significantly improved by adding the interaction term between consistency and neighborhood 

size, χ2(1) = 0.04, p > .05, when both the random and main effects were included.  

For the VSP model, the analysis revealed a significant main effect of consistency: 

adding consistency as a fixed factor improved model fit compared to a model with random 

effects of simulation and item and a fixed effect of neighborhood size, χ2(1) = 6.16, p < .05, 

while the main effect of neighborhood size was not: adding neighborhood size as a fixed 

factor did not result in a significant improvement in model fit compared to a model with 

random effects of simulation and item and a fixed effect of consistency, χ2(1) = 0.83, p > .05. 

Critically, the interaction between consistency and neighborhood size was significant: the 

model fit was significantly improved by adding the interaction term between consistency and 

neighborhood size, χ2(1) = 5.88, p < .01, when both the random and main effects were 

included. The interaction pattern was similar to participants’ data in which a facilitatory 

effect of neighborhood size in the consistent condition, t=-2.54, p < .05, and an inhibitory 

effect was observed in the inconsistent condition, t=3.01, p < .05. 

To confirm that there was a reliable difference between the VP model and the VSP 

model, we conducted additional linear mixed effects models to test the significance of a 

three-way interaction between consistency x neighborhood size x model type (VP or VSP). A 

control model with random effects of item and simulation, and fixed effects of consistency, 

neighborhood size and model type, and a two-way interaction between consistency and 

neighborhood size was created. Adding the three-way interaction between consistency, 

neighborhood size and model type significantly improved the model fit, χ2(3) = 31.71, p 

< .001, compared to the control model, indicating the difference between the VP model and 

the VSP model was statistically reliable.   
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3.3. Exploring the influence of semantic processing on the effect of neighborhood size 

It seems that neighboring characters can facilitate the processing of a target character 

containing a consistent mapping between visual orthography and phonology. This was 

observed in both the VP model and the VSP model. However, only the VSP model could 

produce an inhibitory effect for inconsistent characters with large neighborhoods as seen in 

the participants’ data. This suggests that the inclusion of a semantic pathway is the key to 

accounting for the correct interaction pattern between neighborhood size and consistency. To 

explore this we examined how the division of labor between the phonological pathway, 

vision to phonology (V->P), and the semantic pathway, semantics to phonology (S->P) was 

modulated by neighborhood size and consistency in the VSP model. 

 Several computational studies have utilized a lesion technique to explore the relevant 

contribution from different pathways to the activation of either semantics or phonology 

(Harm & Seidenberg, 2004; Welbourne, Woollams, Crisp, & Lambon Ralph, 2011). 

Following Welbourne et al. (2011), to obtain the contribution made by the phonological 

pathway (V->P), we first computed the error score in the phonological units after all the links 

between the hidden units in the semantic pathway and phonological units were removed. 

Similarly, for the contribution of the semantic pathway (S->P), the error score in the 

phonological units were computed after all the links between the hidden units in the 

phonological pathway and phonological units were removed. As the error score in the model 

indicated poor performance3, the reciprocals of the two error scores were used to compute the 

proportional contribution made by the two pathways as a measure of division of labor.  

We tested the VSP model on each group of characters used in the neighborhood size 

test by separately severing the links between the hidden units and the phonological units in 

each pathway. We then computed the division of labor between the pathways as described in 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  The use of error scores rather than accuracy is because error scores can provide a more 
sensitive measure when the model is severely damaged (Welbourne, et al. 2011).	  	  
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the previous paragraph. The results are shown in Figure 6. The phonological pathway made a 

larger contribution to the activation of phonology then the semantic pathway for all types of 

characters. However, the relative contribution for each type of character was different. The 

phonological pathway contributed more for consistent characters than for inconsistent 

characters. In contrast, the semantic pathway contributed more for inconsistent characters 

than for consistent characters, and most interestingly, the contribution was larger for 

inconsistent characters with small neighborhoods than for inconsistent characters with large 

neighborhoods. This is due to the fact that in the model the phonological pathway particularly 

specializes in learning consistent mappings and the strength of this effect is governed by 

neighborhood size. This in turn frees the semantic pathway to specialize in processing 

inconsistent characters with small neighborhoods. This graded specialization is what leads to 

the interaction between neighborhood and consistency. 

 ------------------------------------------------------------------------------------------ 
Insert Figure 6 about here 

----------------------------------------------------------------------------------------- 
 

3.4. Internal orthographic representations 

In previous computational models of Chinese character naming, the orthographic 

representations have been predefined to encode the detailed orthographic structures of 

characters such as relative position of strokes or radicals, number of strokes or radicals in a 

character (Hsiao & Shillcock, 2004; Yang et al., 2009; Yang et al., 2013). In their analyses of 

the internal representations, Yang et al. (2009) showed that characters that shared the same 

phonetic radical tended to develop similar representations, suggesting the model was able to 

extract the critical functional unit in the translation from print to sound. In the present models, 

explicit orthographic information was not provided so it would be instructive to examine the 

internal representations of the orthographic hidden units in the present model to see what 
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kind of orthographic features are represented. We conducted a principal components analysis 

on the representations of different characters sharing the same phonetic radical. The 

relationship between internal representations, visual similarity and consistency was also 

explored. 

To test whether the VSP model had learnt to develop similar internal orthographic 

representations for characters in the same phonetic radical family, the activations of all 

orthographic hidden units for six representative phonetic radical families of characters were 

analyzed by principal components analysis. The first two principal components of the high-

dimensional vectors formed by the activations of the orthographic hidden units were 

extracted. Figure 7 shows the components for the six phonetic radical families (皇 /huang2/,  

半 /ban4/, 唐 /tang2/, 更 /qeng1/, 果 /guo3/, and 甫 /fu3/). The number of characters in each 

phonetic family ranged from four to ten. As can be seen, the representations formed 

distinctive clusters for each phonetic radical family. For instance, the representations for 

characters (徨, 煌, 蝗, 遑, 隍, 偟: /huang2/) sharing the same phonetic radical, 皇, formed a 

cluster in the orthographic space, which was clearly distinctive from those characters having 

different phonetic radicals. It is interesting to note that there was some variability in different 

phonetic radical families. It seemed that the representations for the phonetic radical’s family 

members like 皇 had formed a tighter cluster while the representations for other phonetic 

radical’s family members like 果 had formed a looser cluster. 

------------------------------------------------------------------------------------------ 
Insert Figure 7 about here 

----------------------------------------------------------------------------------------- 
  

To further explore the relations between internal representations and character 

consistency, we investigated whether the degree of similarity between orthographic 
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representations in a given phonetic radical family depends on consistency, and how that is 

modulated by visual similarity. The entire training corpus was analyzed (in total 663 phonetic 

radical families). The average consistency score for each phonetic radical family was 

computed by averaging the consistency scores of all the family members, (M=0.54, SD=0.28). 

The visual similarity between two characters was measured by computing the cosine 

similarity between their visual representations. So the average visual similarity for each 

phonetic radical family was the average paired-wise cosine similarity of all the family 

members, (M=0.73, SD=0.06). The distance between internal representations for each 

phonetic radical family was measured by computing the paired-wise cosine distances 

between family members and then averaging the results, (M=0.012, SD=0.004). To explore 

the relation between visual similarity, consistency and orthographic hidden representations, 

we conduced a regression analysis with visual similarity, consistency and their interaction as 

predictors, and with cosine distance between representations as a dependent variable. The 

results showed that both visual similarity, β = -0.44,  p < .001, and consistency, β = -0.36,  p 

< .001 were significant; indicating that characters in the same phonetic radical family that are 

visually similar and have consistent pronunciations tend to develop similar orthographic 

hidden representations. Interestingly, the interaction between consistency and visual 

similarity was also significant, β = 0.15,  p < .001 (see Figure 8), showing that the effect of 

visual similarity is stronger in inconsistent characters than in consistent characters. These 

results suggest the degree of similarity of representations between characters in the same 

phonetic radical family is not only determined by visual similarity of characters but also 

depends on the phonological properties of phonetic radicals. 

------------------------------------------------------------------------------------------ 
Insert Figure 8 about here 

----------------------------------------------------------------------------------------- 
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4. General discussion 

The primary aim of this study was to investigate the effect of orthographic 

neighborhood size in Chinese character naming. The behavioral data showed a facilitatory 

effect of neighborhood size for consistent characters whereas an inhibitory effect was 

observed for inconsistent characters (Figure 5). Two computational models of Chinese 

character naming were developed to explore the functional cause of the inhibitory effect 

observed in the behavioral data. Although both the VP and VSP models could simulate the 

frequency and consistency effect, only the model which included a semantic pathway (the 

VSP model) was able to produce the correct interaction pattern between neighborhood size 

and consistency (Figure 5), suggesting that semantic processing plays a key role in 

accounting for the effect of neighborhood size in Chinese character naming. It is worth noting 

that in this study the contribution of the semantic pathway is particularly strong for characters 

with small neighborhoods, which is contrary to what would be predicted from a purely lexical 

account (i.e., a larger effect of the lexical pathway for characters with large neighborhoods). 

This is because, on a PDP account, each pathway compensates for the properties of the other, 

whereas this is not true for purely lexical accounts.   

 Li et al. (2011) found an inhibitory effect of neighborhood size for inconsistent 

characters and they attributed the inhibition to high frequency neighbors. While the present 

finding of inhibitory effects for inconsistent characters is congruent with their data, we also 

observe a facilitatory effect for consistent characters. Analysis of frequency for all the items 

revealed that about 92% of the target characters had at least one high frequency neighbor so 

the high frequency neighbor hypothesis cannot explain all of our data. On this basis, we 

would suggest that it is the presence of neighbors with consistent pronunciations that drives 

the inhibitory effect for inconsistent items, though we acknowledge that the magnitude of the 

effect is likely driven by the summed frequency of those neighbors. 
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The interaction pattern between consistency and neighborhood size found in the 

present study indicates that if most neighbors of a target character share the same 

pronunciation with the character, the neighbors facilitate character naming; by contrast, if 

most neighbors and the target character have different pronunciations, the neighbors inhibit 

the naming latency. These results provide support to the phonological computation account of 

orthographic neighborhood size (Adelman & Brown, 2007; Peereman & Content, 1997). 

According to this account, the effect of neighborhood size is not limited to orthographic 

processing as proposed by Andrews (1989; 1992) but the effect also depends on the 

transformation of orthography-to-phonology. In particular, in a multiple regression study on 

four sets of large-scale word naming data, Adelman and Brown (2007) showed that 

orthographic neighbors of a word could greatly facilitate word naming when they were also 

phonological neighbors (i.e., phonographic neighbors) because they could provide the correct 

pronunciation for the target word. When this factor was taken into account, the measure of 

pure orthographic neighborhood size did not exert an additional unique facilitatory effect in 

accounting for naming latencies. Moreover, as indicated by Adelman and Brown (2007), if 

the orthographic neighbors of a target could not support the correct pronunciation, one might 

expect to see the inhibitory effect on naming. However, their regression results only showed 

the null or a little inhibitory effect of orthographic neighborhood size, suggesting the 

competitive inhibition between words in naming might be weak (Adelman and Brown, 2007). 

This may be because in alphabetic languages even inconsistent words have considerable 

consistent overlap with their inconsistent neighbors that would support the pronunciation of 

the onset and coda. In Chinese, phonetic consistency is a much more absolute concept. This 

may explain the clear inhibition effect of orthographic neighborhood size for inconsistent 

characters that has been observed in Li et al. (2011) and the current study. In addition, our 

simulation results suggest that the inhibition effect depends on semantic activation of 
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phonology, presumably because the phonological route specializes in consistent mappings 

allowing the semantic pathway to compensate by learning the mappings for the inconsistent 

items. The lesion analyses of the VSP model also revealed that characters with small 

neighborhoods relied more on the semantic pathway compared with characters with large 

neighborhoods. Collectively, these results suggest that the division of labor between the 

semantic and orthographic activation of phonology is critical to explaining the inhibitory 

neighborhood effects in Chinese character naming. 

This explanation can also shed light on the seemingly contradictory finding that 

neighborhood size in English has a facilitatory effect whereas it has an inhibitory effect in 

Chinese naming. In English semantic processing plays little role in naming words that have 

typical spelling-to-sound mappings, but is required for words that have atypical spelling-to-

sound mappings (Strain, Patterson, & Seidenberg, 1995; Woollams, 2005). The majority of 

English words have middle to high consistency scores, as is evident from the average 

consistency scores in studies based on a large naming datasets. For instance, the average 

consistency score for words in Balota et al. (2004) is 0.9, and for words in Adelman and 

Brown (2007), it is 0.88. As the majority of English words are consistent in nature, a 

facilitatory effect of neighborhood size is expected because the contribution to phonology 

from the phonological pathway is dominant while the contribution to phonology from the 

semantic pathway is weak. In contrast, Chinese has a deep orthographic system where the 

spelling-to-sound information is less reliable. According to the Chinese naming database by 

Chang et al. (2016), about 89% of Chinese characters have pronounceable phonetic radicals. 

Only 46% of them share the same pronunciations with their phonetic radicals. This means 

that the pronunciation of a character derives directly from its phonetic radical may have 43% 

of chance to be wrong. Furthermore, if considering the degree of variation between 

pronunciations of the characters that share the same phonetic radical (regardless whether the 
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phonetic radical is pronounceable), the average consistency score for Chinese characters is 

about 0.55 (Chang et al. 2016), which is much lower than the average consistency score 

(defined by similar concepts) in English. Given that the spelling-to-meaning information is 

not completely arbitrary, it is likely that semantic processing plays a much greater role in 

Chinese and indeed there is evidence showing that character naming performance is affected 

by a variety of semantic variables including imageability, concreteness, number of meanings, 

and semantic ambiguity (Chang et al., 2016; Liu, Shu, & Li, 2007). 

The models developed in the present study can be considered as an extension of a 

previous model of Chinese character naming (Yang et al. 2009), sharing the same statistical 

learning principles. However, a unique feature of the present model is that the training starts 

from visual processing. Although the model did not explicitly encode the orthographic 

structures of characters, the internal representation analyses showed that the model was able 

to extract sensible orthographic representations through learning. Characters in the same 

phonetic radical family tended to develop similar internal representations, and the within-

family distances of the internal representations were not merely determined by visual 

similarity of characters, but also determined by the degree of the characters sharing the same 

pronunciation. However, it should be noted that the present model did not include a pathway 

from vision to semantics. So the internal orthographic representations here were only 

modulated by phonological properties of characters. One might expect that the 

representations would also be sensitive to semantic properties of characters if the model had 

been trained on the mappings between vision and semantics in addition to the mappings 

between vision and phonology. As argued by Feldman and Siok (1999), both phonetic and 

semantic radicals are important processing units in Chinese. Thus future work should be 

conducted to explore the development of orthographic representations and the degree of 

sensitivity in orthographic processing to phonetic and semantic radicals.   
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5. Conclusion 

The present study investigated how characters sharing the same neighboring 

structures (phonetic radicals) affect the naming latencies by using the behavioral experiment 

and computational modeling. The behavioral data showed orthographic neighbors could aid 

character naming when they shared the same pronunciation with the target; otherwise the 

inhibitory effect was observed. This provides support to the phonological computation 

account of orthographic neighborhood size. Simulation results showed that the model 

required both the orthography-to-phonology and the semantics-to-phonology processing 

routes to simulate this behavioral pattern.  
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Appendix A: The VP control model 

 
To demonstrate the differential effects produced by the VP and VSP models were not simply 

due to a capacity or training difference, we trained an additional VP model to serve as a 

control model. This VP control model had an equal number of units to that of the VSP model. 

It also received the same amount of training presentations as did the VSP model. Figure A.1 

shows the architecture of the VP control model. It consisted of five layers of units: 800 visual 

inputs, 60 hidden units, 300 orthographic hidden units, another 300 hidden units and 105 

phonological units. Every unit in one layer was fully connected to the next layer. All the 

training and testing procedures were otherwise identical to that descried in Simulation section 

3.1. 

 The training was halted after 20 million presentations, and at this point the VP control 

model could correctly pronounce 99.5% of characters. We then examined whether the VP 

control model could produce both the effect of frequency and consistency (Lee et al. 2005) 

and the effect of orthographic neighborhood size and consistency obtained in the present 

behavioral experiment (Section 2.2). Importantly, we aimed to test whether the patterns 

produced by the VP control model were similar to those produced by the VP model. 

For the effects of frequency and consistency, the VP control model was tested on the 

all the stimuli taken from Lee et al. (2005, experiment 1). Linear mixed effects models were 

applied to analyze model performance with both item and simulation number (one to ten) as 

random factors and error score as a dependent variable. Error items and outliers (greater than 

two and a half standard deviations from the mean) were removed, resulting in a removal of 

5.75% of items in total. The statistical analysis results showed that the frequency effect was 

significant: adding frequency as a fixed factor improved model fit compared to a model with 
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random effects of simulation and item and a fixed effect of character type, χ2(1) = 52.36, p 

< .001. The effect of character type was also significant: adding character type as a fixed 

factor improved model fit compared to a model with random effects of simulation and item 

and a fixed effect of frequency, χ2(2) = 6.71, p < .05. There interaction between frequency 

and character type was marginally significant, where the model fit was improved by adding 

the interaction between frequency and character type, χ2(2) = 5.07, p = .079, when both the 

random and main effects were considered. As can be seen in Figure A.2, the resulting pattern 

was similar to that of the VP and the VSP model in Figure 4. 

   For the effect of orthographic neighborhood size and consistency, the VP control 

model was tested on the same set of stimuli as those in the behavioral experiment. Again, 

linear mixed effects models were applied to analyze model performance with both item and 

simulation number (one to ten) as random factors and error score as the dependent variable. 

Error items and outliers (greater than two and a half standard deviations from the mean) were 

removed prior to analyses, resulting in a removal of 3.58% of items in total. The statistical 

analysis results showed that the consistency effect was significant: adding consistency as a 

fixed factor improved model fit compared to a model with random effects of simulation and 

item and a fixed effect of neighborhood size, χ2(1) = 11.43, p < .01, but the effect of 

neighborhood size was not: adding neighborhood size as a fixed factor did not result in a 

significant improvement in model fit compared to a model with random effects of simulation 

and item and a fixed effect of consistency, χ2(1) = 0.18, p > .05. The interaction between 

consistency and neighborhood size was also not significant: the model fit was not 

significantly improved by adding the interaction term between consistency and neighborhood 

size, χ2(1) = 0.008, p > .05, when both the random and main effects were included. As can be 

seen in Figure A.3, the interaction pattern produced by the VP control model was similar to 

that of the VP model (see Figure 5). However, the interaction pattern was different from 
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either that of the VSP model or that of participants (see Figure 5). In sum, these results 

provided strong evidence that the difference between the VP and VSP models was 

attributable to the different architectures of the two models and could not be attributed to 

capacity limitation or differing lengths of training. 
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Figure 1. The architectures of the VP model (left panel) and the VSP model (right panel).  
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Figure 2. The phonological representation scheme based on Chinese phonetic features. 
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Figure 3. Illustrations of semantic representations used in the VSP model. 
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Figure 4. Mean error scores produced by the VP model and the VSP model for high and low 
frequency characters with different levels of character type along with the behavioral data 
reproduced from Lee et al. (2005; experiment 1). Error bar represents ±1 standard error. CR: 
Consistent Regular; IR: Inconsistent Regular; II: Inconsistent Irregular. 
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Figure 5. Mean error scores produced by the VP model and the VSP model for characters 
with large and small neighborhood as a function of consistency along with the participants’ 
data. Error bar represents ±1 standard error. Con: consistent; Incon: inconsistent; Large N: 
large neighborhood; Small N: small neighborhood. 
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Figure 6. Division of labor in the computation of phonology. Effects of consistency and 
neighborhood size on the phonological pathway and the semantic pathway in the VSP model. 
Error bar represents ±1 standard error. Large N: large neighborhood; Small N: small 
neighborhood. 
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Figure 7. The internal representations of six representative phonetic radical families (皇 
/huang2/,  半 /ban4/,  唐 /tang2/,  更 /qeng1/,  果 /guo3/,  甫 /fu3/). 
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Figure 8. Cosine distance between internal representations for all phonetic radical families as 
a function of consistency and visual similarity. 
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Figure A1. The architecture of the VP control model. 
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Figure A.2. Mean error scores produced by the VP control model for high and low frequency 
characters with different levels of character type. Error bar represents ±1 standard error. CR: 
Consistent Regular; IR: Inconsistent Regular; II: Inconsistent Irregular. 
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Figure A.3. Mean error scores produced by the VP control model for characters with large 
and small neighborhood as a function of consistency. Error bar represents ±1 standard error. 
Con: consistent; Incon: inconsistent; Large N: large neighborhood; Small N: small 
neighborhood. 
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